Producing UML Models from Focal Specifications
An Application to Airport Security Regulations

David Delahaye
CEDRIC/CNAM, Paris, France

David.Delahaye@cnam. fr

Jean-Frédéric Etienne
CEDRIC/CNAM, Paris, France

etiennje@cnam. fr

Véronique Viguié Donzeau-Gouge
CEDRIC/CNAM, Paris, France

donzeaul@cnam. fr

Abstract

We propose an automatic transformation of Focal spec-
ifications to UML class diagrams. The main motivation for
this work lies within the framework of the EDEMOI project,
which aims to integrate and apply several requirements en-
gineering and formal methods techniques to analyze reg-
ulations in the domain of airport security. The idea is to
provide a graphical documentation of formal models for de-
velopers, and in the long-term, for certification authorities.
The transformation is formally described and an implemen-
tation has been designed. We also provide a concrete exam-
ple coming from the EDEMOI project.

1. Introduction

These days, formal methods are undoubtedly the most
effective approach for the production of safety-critical sys-
tems. In essence, the use of formal modeling techniques
provides support to build unambiguous specifications, to
ensure the consistency of a specification and to guarantee
that an implementation satisfies its specification. However,
the validation process cannot be mechanized as it still re-
lies on a high degree of interaction between the various
stake-holders (developers, end-users, certification authori-
ties, etc) involved in a project. In addition, the use of formal
methods requires a certain level of expertise in mathemat-
ics, which usually hinders communication. As a result, the
validation of requirements is quite difficult to achieve. To
remedy these problems, the solution that is widely adopted
is the integration of formal and graphical specifications. In
fact, the use of graphical notations has been shown to be
quite useful when interacting with end-users. For the last
few years, UML [4] has emerged as a standard in industry

for modeling software systems. It provides a set of graphi-
cal notations, which enables the modeling of systems in an
object-oriented style. Currently, it is supported by a wide
variety of tools, ranging from analysis, testing, simulation
to code generation and transformation.

The main motivation for this work lies within the frame-
work of the EDEMOI' [5] project, which aims to inte-
grate and apply several requirements engineering and for-
mal methods techniques to analyze regulations in the do-
main of airport security. For this project, we used Focal to
realize the formal models of two regulations, namely, the in-
ternational standard Annex 17 and the European Directive
Doc 2320. This formalization is described in [2] and the
certification part is presented in [3]. In this paper, we de-
scribe a schema for the translation of Focal specifications
into UML diagrams, with the objective of providing a graph-
ical documentation of our formal models for developers. In
the long term, the idea is to provide higher-level views that
would be pertinent to certification authorities. Our major
concern is to make our transformation automatic and as for-
mal as possible.

The paper is organized as follows: first, we give a brief
presentation of the Focal language; next, we propose a for-
mal description for a subset of the UML 2.1 static structure
constructs; we then describe our transformation from Focal
to UML,; finally, we introduce our implementation and pro-
vide a concrete example extracted from our formalization
of regulations in the context of the EDEMOI project.

2. The Focal environment

Focal [6], initiated by T. Hardin and R. Rioboo, is a
language in which it is possible to build certified applica-

'The EDEMOI project is supported by the French National “Action
Concertée Incitative Sécurité Informatique”.



tions step by step, going from abstract specifications, called
species, to concrete implementations, called collections.
In this language, the first major notion is the structure of
species, which corresponds to the highest level of abstrac-
tion in a specification and which has the following syntax:

species <name> =
rep [= <type>]; (* abstract / concrete

representation )

sig <name> in <type>; (x declaration x)
let <name> = <body>; (x definition *)
property <name> : <prop>; (x property x)
theorem <name> : <prop> (* theorem x)
proof : <proof>;

end

where <name> is simply a given name, <type> a type
expression, <body> a function body, <prop> a (first-order)
proposition and <proof> a proof.

Species can be combined using (multiple) inheritance
(which works as expected) and can be parameterized either
by other species or by entities from species. These two fea-
tures complete the previous syntax definition as follows:

species <name> (<name> is <name>, <name> in <name>, ...)
inherits <name>, <name> (<pars>), ... = ...
end

where <pars> is a list of <name> and denotes the names
which are used as parameters. When the parameter is a
species, the keyword is is, when it is an entity of a species,
the keyword is in.

The other main notion of the Focal language is the struc-
ture of collection, which corresponds to the implementation
of a specification (every attribute must be concrete). The
syntax of a collection is the following:

collection <name> implements <name> (<pars>) = ... end

For further information regarding Focal and, in partic-
ular, for examples of specifications, the reader can refer
to [2, 6], as well as to the Focal Web site?, which contains
the Focal distribution (the Focal compiler, the Zenon auto-
mated theorem prover [1], and some other tools) and some
documentation.

3. UML Syntax

In this section, we give a formal syntax for a subset of the
UML 2.1 static structure constructs [4], used as a means to
provide a graphical documentation for Focal specifications.
Due to space restrictions, we here only consider the con-
structs necessary to represent the notion of species and col-
lection in UML. Normally, the syntax and semantics of each
UML construct are described in the form of a metamodel.

’http://focal.inria.fr/.

The syntax is specified using class diagrams, while the se-
mantics are well-formedness rules expressed in a combi-
nation of OCL and English. In order to provide a formal
framework for the transformation of Focal specifications
into UML diagrams, we choose to represent the syntax of
each UML construct considered in a BNF-like format. The
syntax proposed is derived from the UML 2.1/XMI schema,
generally used for the exchange of UML models in text for-
mat. It is shown in Figure 1, where the non-terminal sym-
bols are in italic, X is a list of X, and X" is alist of X with
at least one element. We also introduce the set Name for
names, and appropriate sets for identifiers (e.g. ClassId
for class identifiers).

4. From Focal to UML
4.1. Extending the UML Metamodel

In order to properly specify, visualize and document Fo-
cal models using UML notations, there is a need to extend
the UML metamodel to cater for the semantic specificities
of the Focal specification language (see Section 2). The
necessary extensions are realized via the creation of a pro-
file, where appropriate stereotypes are defined to reflect the
semantics of each Focal construct. These stereotypes also
have a set of OCL constraints, which are used to specify
the well-formedness rules associated to each construct. Due
to space restrictions, we do not detail the stereotypes con-
stituting our profile, which are namely: «Parameterized-
Inheritance», «Species», «Collection», «Inheritance», «Im-
plements», «Is», «In» and «Method».

4.2. Transformation Rules

In spite of their similarities, Focal species and UML
classes are based on two different concepts. In Focal, the
functions defined within a species are intended to manipu-
late entities of a given representation, which are static items
having a unique value. Hence, we model a species as a
singleton factory class (stereotyped with «Species»), which
defines an interface for manipulating immutable value ob-
jects of a given type. Let .S denote a species of the form:
S = species s (P) inherits ', = rep; M; R end, where
s is the name of the species, P a list of parameters, I'j, a
list of species from which we inherit, rep the representation
declaration, M the declared/defined functions, and R the
properties/theorems defined in S. Given the context I, in
which S is well typed, the corresponding UML model U,,
is obtained by applying the transformation rule denoted by
[S]r in Figure 2 (due to space restrictions, we only focus
on the translation of the representation). It should be noted
that our transformation captures every aspect of the Focal
language.



CcD

Um = TS := TmpSig(ts, param = ﬁl [, ownedParam(FPl)] )
CD = CICOIOE|IDE FP :=TPICTP
C := Class(c, [name,] [visibility,] iSLi“Jc~iSAb5traCt’ TP := TmpParam(¢p, paramElem = ¢ [, ownedParamElem(P E)] )
TB,[RS,])GE,CO, AT, C,0OP) CTP := ClsfrTmpParam(cp, allowSubstitutable, paramElem = c;
GE := Generalization([:sSubstitutable,] general = c) [, ownedParamElem(C)] [, constClsfr = c2])
OP := Operation(op, [name,] [visibility,] isLeaf, isStatic PE = COIOE
isAbstract, PA [, TB] [, TS][, redefinedOpr = 5p;']) TB := TmpBinding(signature = s, P.S)
PA = Parameter(pa, [name,] direction [, type = typ]) PS = ParamSub(formal = fp, actual = ap [, ownedActual(A P)])
AT := Property(at, [name,] [visibility,] isLeaf, isStatic, AP = PEIC
isReadOnly [, type = typ] [, redefinedProp = at. 1) CO = Constraint(co [name,] [visibility,] [constElem = 7' ] spec(OE) )
typ = c|Integer | Boolean | UnlimitedNautral | String OF := OpaqueExp(oe [, name] [, visibility] [, body(body)]
RS = RedTmpSig(rs, isLeaf, redefContext = c, [extendedSig = Teel,] [, language = lang] [, type=typ | )
param = fp' [, ownedParam(FP")]) DE = Dependency(de, [name,] [visibility,] client = m7 ', supplier =73 ")
where
fp € TPrmIdUClsfrTPrmlId e S Constld U OExzpld
s € RedT Sigld U T Sigld ap € Constld U OExpld U Classld
n S Constld U OExpld U ClassIdU AttrId U OprlId U Depld name S Name
body S String lang S String
isLeaf,isAbstract, isSubstitutable, o true | false direction = in | inout | out | return
isReadOnly, isStatic, allowSubstitutable T visibility :=  public | private | protected

Figure 1. Syntax for UML Static Constructs

The representation of a given species is handled in two
ways (rule [rep] 12‘?8), depending on whether it is abstract or
concrete. In the first case, two type parameters T and TSelf
are defined, where T represents the type of the entities and
TSelf the class in which T is encapsulated. The latter is used
to represent the type of the immutable value objects. The
correlation between T and TSelf is specified by the factory
methods makeSelf and getRep, which are introduced only
if the given species is a root node (rule [rep]P, » ). In
the second case, only the TSelf type parameter is generated.

Collections are modeled as concrete singleton factory
classes stereotyped accordingly. The abstraction of the con-
crete representation is achieved through the declaration of
an inner class Self. This class is declared with a private
constructor and a private read-only attribute to obtain the
desired encapsulation. The type of the immutable value ob-
jects is fixed definitely through the use of the «Implements»
stereotype. In essence, the type parameters T and TSelf are
instantiated such that T is being substituted for a concrete
type and TSelf is being substituted for the inner class Self
created on purpose.

4.3. Implementation

Our implementation consists of two parts. First, we de-
fined a UML profile for the Focal specification language
through the use of the UML2 Eclipse plug-in. This plug-
in provides an implementation of the UML 2.1 metamodel
and its integrated OCL checker allowed us to validate the
constraints defined in our profile. Next, we developed an
XSLT stylesheet that specifies the rules to transform a Focal
specification generated (by the compiler) in FocDoc format
(XML) into a UML model expressed in the XM interchange
format.

5. An Application Example

To illustrate our transformation process, we consider a
relatively concise example extracted from the Focal spec-
ification realized within the framework of the EDEMOI
project. This concerns the specification established for
cabin persons. The corresponding Focal species is defined
as follows:

species cabinPerson (cb is cabinBaggage) =
rep;
sig equal in self — self — bool;
sig identityVerified in self — bool;
sig cabinBaggage in self — cb;
property equal_reflexive :
all x in self, lequal (x,x);
end

It can be observed that cabinPerson is a parameterized
species and its representation is left undefined. We also
assume that the representation of species cabinBaggage is
still abstract. To give an example of inheritance and show
how the abstraction of a concrete representation is handled
during the transformation process, we also introduce col-
lection cabinPerson_col, which provides an implementation
for species cabinPerson:

collection cabinPerson_col implements cabinPerson (bag) =
rep = string * bag * bool;
let name (s in self) in string = #first (s);
let cabinBaggage (s in self) in bag = #first (#scnd (s));
let identityVerified (s in self) in bool =
#scnd (#scnd (s));
end

In this collection, the representation is specified as a
triple, with the functions name, cabinBaggage and identi-
ty Verified defined accordingly. In the “implements” clause,



RE GE (0)3 OP
Class (s, “S”, public, false, true, HP]]F,rep,s’ [[Fh]]prs, [Rlr,s. [[P]]ns [[Tep]]l“,l‘h s HM]]F7r‘h7P7_g) «Species»

DE
lIFhHF,'r'ep,s

[Slr =

RE . _ . . prm
[[P]]Fmep,s _ { RedTmpSig (s-7s, true, redefContext = s, param = s-tp-cy ... s-tp-c, [rep], where, P=c1 ® Iy ...cn O In and O € {is, in}

ownedParam ([c¢1 © Ii]r,p,s ... [cn @ Inlr,P,s [[rep]]lli‘fs))

rep Prm , ClsfrTmpParam (s-tp-self, false, paramElem = s-pa-self,
[ ]]PA ownedParamElem (Class (s-pa-self, “TSelf”, public, false , false) )) if rep= 1
re =
Plr. ClsfrTmpParam (s-tp-self, false, paramElem = s-pa-self ,
ownedParamElem (Class (s-pa-self, “TSelf”, public, false , false) ) )  otherwise

rep Prm , = ClsfrTmpParam (s-tp-rep, false, paramElem = s-pa-rep, ownedParamElem (Class (s-pa-rep, “T”, public, false , false) ) )

Operation (s-op-self , “makeSelf” , protected , false, false, true,
Parameter (s-op-self-in , “x”, in, type =repTyper. p ,.., ;) Parameter (s-op-self-ret , “ret”, return, type = s-pa-self))

OP
re =
[ p]]F'Fh s Operation (s-op-rep , “getRep” , protected , false, false, true,

Parameter (s-op-rep-in , “x”, in, type = s-pa-self ) Parameter (s-op-rep-ret , “ret”, return , type = repTyper p .., 5))

it T, =0
T s-pa-rep if rep=1 [ ]]prm s-tp-rep s-tp-self if rep =L
re e § = re _
PIYPEr, P rep,s HTH;Y,F;S,L if rep=r Pl s-tp-self otherwise

Figure 2. Transformation Rules: Focal to UML

species cabinPerson is instantiated with bag, which is a col-
lection derived from cabinBaggage (to simplify, we here as-
sume that its representation is set to the predefined type int).
Now, by applying the transformation rules described in
Section 4, the UML classes shown in Figure 3 (using the
corresponding graphical visualization) are obtained.

CbT : Class
CoSelf - Class
ds» Cb ; Class >> CabinBaggage<CbT,CbSelf>
T:Class
TSelf - Class
<Speciess
= cabinperson
Attribute
Operation
# cabinPerson_cb () : Cb
# makeSelf (x - T TSelf
# getRep (x: Tself): T
+ equal () - TSelf => TSelf -> Bool
+ identityVerified ( } - TSelf -> 8ool
+ cabinBaggage () : TSelf -> CbSelf

equal_reflexive
{all x in self, lequal(x, X)}

<mplements»
CoT -> Int, ChSelf -> Bag::Self, Ckj -> Bag,
T -> Pair<String, Pair<Bag: Self,Bod|> >, TS&lf -> CabinPerson_col::Self

«Collections
CabinPerson_col
Attribute
- uniquelnstance : CabinPerson_col
Elser
Attribute
- ren . Pair<String,Pair <Baq; Self, Bool > >
Operation

Operation
~ CabinPerson_col ()
+ instance () . CabinFerson_col
# cabinPerson_ck () Ch
# makeSelf ( x : Pair<String, Pair <Bag: Self,Bool> > ) : Self
# getRep (x : Self ) : Pair<String, Fair <Bag::Self, Bool> >
+ equal () : Self -> Self -> Bool
+ identinVerified () : Self > Bool
+ cahinBaggage () : Self -> Bag:Self

- Self ()

Figure 3. CabinPerson Classes

6. Conclusion

Regarding future work, we expect to use the present
transformation rules as a basis to generate higher-level
views that would be closer to conceptual models (similar
to those produced at the preliminary stage of the EDE-
MOI project) and hence more pertinent for certification au-
thorities or end-users (not only for developers). Another

perspective is to apply our transformation process to more
concrete specifications (the formal models realized within
the framework of the EDEMOI project are quite abstract),
such as the standard library of Focal, which consists of a
large formalization of Computer Algebra. In this way, it
would be possible to see whether the generated UML mod-
els are fairly comprehensible and can be used for manag-
ing libraries. Finally, we aim to generate more dynamic
views of the formal models (sequence and state-transition
diagrams) through static analysis performed on the defini-
tions involved in Focal specifications.

References

[1] R. Bonichon, D. Delahaye, and D. Doligez. Zenon: An
Extensible Automated Theorem Prover Producing Checkable
Proofs. In Logic for Programming Artificial Intelligence and
Reasoning (LPAR), volume 4790 of LNCS/LNAI, pages 151—
165. Springer, Oct. 2007.

[2] D. Delahaye, J.-F. Etienne, and V. Viguié Donzeau-Gouge.
Certifying Airport Security Regulations using the Focal En-
vironment. In Formal Methods (FM), volume 4085 of LNCS,
pages 48-63. Springer, Aug. 2006.

[3] D. Delahaye, J.-F. Etienne, and V. Viguié Donzeau-Gouge.
Reasoning about Airport Security Regulations using the Fo-
cal Environment. In International Symposium on Leveraging
Applications of Formal Methods, Verification and Validation
(ISoLA), pages 36—44, Nov. 2006.

[4] O. M. Group. UML: Superstructure, version 2.1.1. OMG,
Feb. 2007. Available at: http://www.omg.org/.

[5] The EDEMOI Project, 2003.
http://www-1lsr.imag.fr/EDEMOI/.

[6] The Focal Development Team. Focal, version 0.3.1.
CNAM/INRIA/LIP6, May 2005.

Available at: http://focal.inria.fr/.



